Skip to main content

GATE 2021 SYLLABUS FOR MECHANICAL ENGINEERING

GATE 2021 SYLLABUS : ME Mechanical Engineering👍

Section 1: Engineering Mathematics

Linear Algebra: Matrix algebra, systems of linear equations, eigenvalues and eigenvectors.

Calculus: Functions of single variable, limit, continuity and differentiability, mean value theorems, indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals, applications of Gauss, Stokes and Green’s theorems.

Differential equations: First order equations (linear and nonlinear); higher order linear differential equations with constant coefficients; Euler-Cauchy equation; initial and boundary value problems; Laplace transforms; solutions of heat, wave and Laplace's equations.

Complex variables: Analytic functions; Cauchy-Riemann equations; Cauchy’s integral theorem and integral formula; Taylor and Laurent series.

Probability and Statistics: Definitions of probability, sampling theorems, conditional probability; mean, median, mode and standard deviation; random variables, binomial, Poisson and normal distributions.

Numerical Methods: Numerical solutions of linear and non-linear algebraic equations; integration by trapezoidal and Simpson’s rules; single and multi-step methods for differential equations.

Section 2: Applied Mechanics and Design

Engineering Mechanics: Free-body diagrams and equilibrium; friction and its applications including rolling friction, belt-pulley, brakes, clutches, screw jack, wedge, vehicles, etc.; trusses and frames; virtual work; kinematics and dynamics of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations; Lagrange’s equation.

Mechanics of Materials: Stress and strain, elastic constants, Poisson's ratio; Mohr’s circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; concept of shear centre; deflection of beams; torsion of circular shafts; Euler’s theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.

Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope.

Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts.

Machine Design: Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.

Section 3: Fluid Mechanics and Thermal Sciences

Fluid Mechanics: Fluid properties; fluid statics, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli’s equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings; basics of compressible fluid flow.

Heat-Transfer: Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan- Boltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis.

Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behavior of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.

Applications: Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines; steam and gas turbines.

Section 4: Materials, Manufacturing and Industrial Engineering

Engineering Materials: Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials.

Casting, Forming and Joining Processes: Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and Cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.

Machining and Machine Tool Operations: Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, jigs and fixtures; abrasive machining processes; NC/CNC machines and CNC programming.

Metrology and Inspection: Limits, fits and tolerances; linear and angular measurements; comparators; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly; concepts of coordinate-measuring machine (CMM).

Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools; additive manufacturing.

Production Planning and Control: Forecasting models, aggregate production planning, scheduling, materials requirement planning; lean manufacturing.

Inventory Control: Deterministic models; safety stock inventory control systems.

Operations Research: Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.




Comments

Popular posts from this blog

ME -PRODUCTION PLANNING AND CONTROL Notes-MECHANICAL

THIS BLOG IS ABOUT PRODUCTION PLANNING AND CONTROL. Production planning and control is a tool available to the management to achieve the stated objectives.Thus, a production system is encompassed by the four factors. i.e, quantity, quality, cost and time. Production planning starts with the analysis of the given data, i.e., demand for products, delivery schedule etc., and on the basis of the information available, a scheme of utilization of firms resources like machines, materials and men are worked out to obtain the target in the most economical way.Once the plan is prepared, then execution of plan is performed in line with the details given in the plan. Production control comes into action if there is any deviation between the actual and planned. The corrective action is taken so as to achieve the targets set as per plan by using control techniques. Thus  production planning and control can be defined  as the “direction and coordination of firms’ resources towards attain

What is Heat Transfer ? Thermodynamics? ,Heat and Temperature ? conduction ,convection ,radiation -MECHANICAL

Heat transfer / Heat v/s Temperature/Modes of Heat transfer ..... BASICS OF HEAT TRANSFER While teaching heat transfer ,one of the first questions students commonly ask is the difference between heat and temperature .Another common questions concerns the difference between the subjects of heat transfer and thermodynamics . Let me begin this unit by trying to address these two questions.also three modes of heat transfer ,conduction convection and radiation. What is Heat? Heat is a form of energy. It derives its origins at the molecular scale. Molecules of a  substance vibrate at their positions either fixed or not when energy is supplied to them. As  they vibrate they transfer their energy to the surrounding molecules causing them to vibrate as well.   What is Temperature? The temperature of a body is the measure of the amount of heat content possessed by it. It is measured in degree Celcius (°C) or Kelvin(°K). The temperature of a substance is a physical quantit

Forecasting notes from production planning and control -MECHANICAL

Forecasting Definition and its Methods, FORECASTING INTRODUCTION The growing competition, frequent changes in customer's demand and the trend towards automation demand that decisions in business should not be based purely on guesses rather on a careful analysis of data concerning the future course of events. More time and attention should be given to the future than to the past, and the question 'what is likely to happen?' should take precedence over 'what has happened?' though no attempt to answer the first can be made without the facts and figures being available to answer the second. When estimates of future conditions are made on a systematic basis, the process is called forecasting and the figure or statement thus obtained is defined as forecast. In a world where future is not known with certainty, virtually every business and economic decision rests upon a forecast of future conditions. Forecasting aims at reducing the area of uncertainty that s